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Fig. 1: Components 
 
  1 Ball launcher (650267) 
  2 Back plate 
  3 Guide for swing pointer 
  4 Bearing screw 
  5 Counter bearing 
  6 Swing pointer 
  7 Angle scale 
  8 Pendulum 
  9 Ball catcher 
10 Base plate 
11 Table clamp 
12 Knurled screw 
13 Ramrod (delivered with 650267) 
14 Extra weights, 2 pcs. 
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1. Safety instructions 
 
This instruction sheet is concerned mainly with the ballistic pendulum. You should also read 
the instructions for the ball launcher 650267. 
 
To check whether a ball is located in the ball launcher and the spring is cocked, only use the 
observation holes at the sides. Do not look into the barrel from the front. Risk of injury! 
 
Never aim at people! 
 
Protective goggles should be worn during the experiments. 
 
The ball launcher should always be stored with the spring loose and with no ball in the barrel. 
 
 
2. Description 
 
The ballistic pendulum is for experiment-based determination of the launch velocity of a ball 
when it leaves the ball launcher. It is also possible to determine trajectories when the ball is 
launched horizontally or at an angle. Launch heights of 5, 10, 15, 20 or 30 cm can be 
selected easily with the aid of the drilled holes. 
 
Thanks to the extreme lightness of the pendulum, the experiment can be performed using 
comparatively safe plastic balls instead of steel balls. Experiments involving inelastic 
collisions (quantitatively) and elastic collisions (qualitatively) can be evaluated. The velocity 
of the balls determined from trajectory and pendulum experiments typically agree to within 
about 3%. 
 
Extra weights allow various pendulum travels to be investigated for constant speeds. 
 
 
3. Operation and maintenance 
 
First the ballistic pendulum is screwed to a stable bench by means of its clamp. The ball 
launcher is then screwed to the back plate (2) from behind either in a horizontal position in 
front of the pendulum as in Fig. 1 or as shown in Fig 3. 
Tip: if the workbench is not stable enough, it may be that when the pendulum swings to its 
maximum extent and then swings back, it may jog the apparatus when striking the ball 
launcher, causing the swing pointer to be shifted out of line. If this happens, the pendulum 
should rather be stopped by hand. 
 
Balls should always be loaded when the spring is not under tension by placing the sphere in 
loosely through the front of the plastic cylinder within the device. The sphere is then pushed 
down inside the barrel using the ramrod until the desired spring tension has been reached. 
The ramrod should not be removed too quickly, otherwise the suction its removal produces 
may pull the sphere out with it. The position of the sphere may only be checked using the 
observation holes. Never look into the barrel! 
 
Before launching, ensure that no one is in the way of the trajectory. To launch, the cord of 
the launching lever is briefly pulled perpendicularly to the lever. 
 
The pendulum (8) can be removed by undoing the bearing screw (4) and turned by 180° so 
that it is installed with the rear of the ball catcher (9) pointing towards the launcher 
(experiments on elastic collision). The counter bearing (5) is designed so that the pendulum 
hangs at a slight angle if the bearing screw is only light tightened. This means that the ball 
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catcher is not precisely in front of the launch aperture of the launcher. For this reason, the 
bearing screw should be tightened until the catcher and the launch aperture are in line. 
 
After turning the pendulum round, or if necessary, the guide (3) for the swing pointer (6) 
should be adjusted so that the pointer just touches it when the pendulum is suspended at 
rest. The screw on the guide should only be finger-tightened to avoid the appearance of 
pressure on the pendulum rod. 
 
 
Maintenance: 
 
the ballistic pendulum principally requires no maintenance. If necessary some non-acid 
grease (Vaseline) can be applied to the bearing screw (4) and the knurled screw (12). Other 
than in the vicinity of the scale, the apparatus may be cleaned using acetone, ethanol (white 
spirit) or petroleum ether as required. Avoid submerging the equipment in water. 
 
 
 
4. Experiment procedure and evaluation 
 
4.1 Ballistic pendulum 
 
4.1.1 Experiment setup 
 
The experiment setup corresponds to Fig. 1 for experiments on inelastic collision. For 
experiments on elastic collisions, the pendulum should be turned round by 180° (cf. Section 
3 „Operation“). 
 
 
4.1.2 Experiment procedure 
 
It is practical for these experiments to enter the experiment number, the spring tension (1, 2 
or 3), the type of collision (inelastic „i“ or elastic „e“), the number of extra weights used and 
the measured angle ϕ . In order to obtain the most accurate experiment results, after one 
shot, a second should be performed with the swing pointer not having been reset to 0° in 
between. This minimizes the unavoidable frictional losses of the swing pointer. 
 
Example experiment sequence: 
 

No Spring 
tension 

Type of 
collision 

Extra weights Angle ϕ  

1 1 i 0 17.5 
2 2 i 0 25.0 
3 3 i 0 36.0 
4 1 i 2 9.5 
5 2 i 2 13.5 
6 3 i 2 19.0 
7 1 e 0 29.5 
8 2 e 0 42.0 
9 3 e 0 60.0 
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4.1.3 Experiment evaluation 
 
4.1.3.1 Inelastic collision 
 
The following equation is valid for the swinging pendulum due to conservation of energy 

kinpot EE =            (1) 

where the potential energy is 
hgmE totpot ∆=           (2) 

Here is totm the total mass of the pendulum including the ball and any extra weights, g is the 
acceleration due to gravity and h∆  is the difference in height of the center of gravity of the 
pendulum at rest and at the maximum extent of its swing. From the measured angle ϕ  and 

the measured length Sl  to the center of gravity according to Fig.2 the following is derived: 
 

)cos1( ϕ−=∆ Slh           (3) 

 
 
Fig. 2: Determining the required lengths. Distance between center of gravity and axis of 
rotation ( Sl ) should be measured including the ball and any additional weights when the 
collision is inelastic. To perform the measurement, the pendulum may, for example, be 
balanced on a ruler mounted on its side. The distance between the center of the ball and the 
axis of rotation is Kl = 280 mm. 
 
The kinetic energy can be calculated from the moment of inertia totΙ  relative to the axis of 
rotation and the maximum angular speed ω  according to the equation 

2

2
1 ωtotkinE Ι= .          (4) 

If Equations 2 and 4 are inserted into Equation 1 and h∆  eliminated using Equation 3 then 
the equation can be rearranged to: 

tot

Stot lgm
Ι

−= )cos1(2 ϕω          (5) 

However, we are not seeking ω , but the initial velocity of the ball 0v . The relationship 
between the two values is given by the equation for the conservation of angular momentum 
directly before and after the collision: 

totK LL =            (6) 
with the angular momentum of the ball  

0vlmL KKK =            (7) 
before the collision and the total angular momentum 

ωtottotL Ι=            (8) 
after the collision. Inserting Eqs. 7 and 8 into Eq. 6 gives: 

ωtotKK vlm Ι=0           (9) 



 5 

Resolving this for ω  and equating with Eq. 5 leads to the following relationship 

)cos1(2
1

0 ϕ−Ι= Stottot
KK

lgm
lm

v         (10) 

 
The moment of inertia is in principle determined from the integral 

∫=Ι
m

tot dml 2            (11) 

where l is the distance of each mass element dm from the axis of rotation. Since in this case 
it is not the moment of inertia that we seek to derive totΙ  can also be calculated from the 
period T of the pendulum (with ball and any extra weights). For a physical pendulum the 
following is valid for small deflections1: 

2

2







=Ι
π

T
lgm Stottot           (12) 

This means that all the variables are now known or calculable. For the above example, the 
following table emerges: 
 

No Km / kg totm / kg Sl / m T / s v0 in m/s 

1 0.00695 0.06295 0.218 1.01 3.39 
2 0.00695 0.06295 0.218 1.01 4.82 
3 0.00695 0.06295 0.218 1.01 6.88 
4 0.00695 0.09795 0.252 1.07 3.51 
5 0.00695 0.09795 0.252 1.07 4.98 
6 0.00695 0.09795 0.252 1.07 6.99 

 
The numeric values should be determined separately for every pendulum, since material and 
manufacturing tolerances mean that values may differ from one to another. 
 
4.1.3.2 Elastic collision 
 
 
For a swinging pendulum Eq. 5 is still valid for the motion after a collision, the only difference 
being that the moment of inertia PΙ  is determined without the ball but with any extra weights 
(pendulum mass mP): 
 

P

SP lgm
Ι

−= )cos1(2 ϕω          (13) 

To determine the relationship between ω  and the initial velocity 0v  both the conservation of 
angular momentum and the conservation of energy before and after the collision must now 
be used. The additional equation is required since the system has an additional degree of 
freedom in the ball velocity 2v  after the collision. As for Eq. 9, the following is true for the 
angular momentum: 

KK

P

PKKKK

lm
vv

vlmvlm

ω

ω

Ι
−=

⇔
Ι+=

02

20

         (14) 

If this velocity 2v  is inserted into the equation for the conservation of energy 

22
2

2
0 2

1
2
1

2
1 ωPKK vmvm Ι+=          (15) 

                                                
1 Recknagel, A.: Physik Mechanik, 3te Auflage, VEB Verlag Technik Berlin, 1958 
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by rearranging in various steps the following expression is obtained for 0v  








 Ι+=
20 1

2
1

KK

P
K lm
lv ω           (16) 

If Eq. 13 is plugged in here and PΙ  determined as in Eq. 12, then 0v  can be calculated for an 
ideal inelastic collision: 
 
 

No Km / kg Pm / kg Sl / m T / s v0 in m/s 

7 0.00695 0.0560 0.211 1.008 2.88 
8 0.00695 0.0560 0.211 1.008 4.05 
9 0.00695 0.0560 0.211 1.008 5.65 

 
These values for 0v  are about 18% smaller than those obtained for inelastic collisions. This 
can be explained by the fact that the elastic collisions are not entirely ideal. 
 
 
4.2 Determination of trajectories 
 
4.1.1 Experiment setup 
 
One possible experiment setup is shown schematically in Fig. 3 (not to scale). The drill holes 
in the back plate of the pendulum are placed so that when a ball is fired to land directly on 
the workbench, the launch heights are 50, 100, 150, 200 and 300 mm. 
 

 
 
Fig. 3: Experiment setup, key: 1 Ball launcher, 2 Launch position of the ball, 3 Paper, 
4 Carbon paper, 5 Easel with whiteboard (for example) 

1 2  3 4 5 
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When launching against a vertical wall (e.g. whiteboard) the radius of the ball (1.25 cm) 
should be subtracted from the distance between the point of launch and the wall to obtain the 
distance measurement xM. The height measurement yM relative to the launch height is given 
by the height of the impact on the wall minus 62.5 mm, 112.5 mm, 162.5 mm, 212.5 mm or 
312.5 depending on the hole used. 
 
 
4.1.2 Experiment procedure 
 
It is practical for these experiments to note the experiment number, the spring tension (1, 2 
or 3), the launch angle and the values xM and yM. Example: 
 

No Spring 
tension 

launch angle ϕ /° distance xM / cm target height yM / 
cm 

1 1 0 171.3 -30 
2 2 0 125.4 -30 
3 3 0 86.9 -30 
4 1 0 62.3 -15 
5 2 0 90.5 -15 
6 3 0 120.7 -15 

 
 
4.1.3 Experiment evaluation 
 
It is practical to take as the origin of the coordinate system the mid-point of the ball at the 
moment of launch. Then the following applies: 

ϕcos0vv x =            (17) 

ϕsin0vvy =            (18) 

2

2
1

tgtvy y −=           (19) 

tvx x=            (20) 

From Eq. 20 xvxt /= , whereby the time can be eliminated from Eq.19. If xv  and yv  are 

then eliminated from the resulting equation using Eqs. 17 and 18, the following is obtained 

ϕ
ϕ

22
0

2

cos2
tan

v
g

xxy −=           (21) 

This is the equation for the trajectory. In this equation only the launch velocity v0 is unknown 
since the distances x and y were measured during the course of the experiments. If v0 is 
calculated for the various experiments, the following results are obtained: 

 
Spring tension v0 in m/s 

1 3.53 
2 5.10 
3 6.85 

 
The numbers are based on a total of 25 experiments, of which only 6 are explicitly listed in 
the above table. The trajectory can now be obtained from these using Eq. 21 and compared 
to the measured values. The result is shown in Fig. 4. 
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Fig. 4: Comparison of measurements and calculated curve, x = horizontal ball distance, y = 
vertical height, symbols = measured values (circles = spring tension 1, squares = spring 
tension 2, rhombuses = spring tension 3), lines = calculated trajectories 
 


